
William T. Doan

A First Trimesterly Review of CS
1436
Written for Dr. Brian Wescott Ricks and his 001 and 009 sections

Confidential and Proprietary — Not for External
Distribution.

This material is protected by copyright under
the Berne Convention for the Protection of Literary
and Artistic Works, as well as applicable national and
international copyright laws.

Unauthorized distribution, reproduction, or any
other use without express written permission is strictly
prohibited and may result in legal action.

September 2024

Springer

Berlin Heidelberg NewYork
HongKong London
Milan Paris Tokyo

Dedication

This work is dedicated to Dr. Brian Ricks for having seen potential in one
young student—one short year ago.

Contents

1 Introduction to Computers and Programming 1
1.1 Why Program? . 1
1.2 Computer Systems: Hardware and Software 1

1.2.1 Major Hardware Component Categories 1
1.3 Central Processing Unit (CPU) . 1
1.4 Main Memory . 2
1.5 Secondary Storage . 2
1.6 Input & Output Devices . 2
1.7 Software – Programs that Run on a Computer 2
1.8 Programs and Programming Languages . 3

1.8.1 Example Programming Problem . 3
1.9 Algorithms and Machine Language . 3

1.9.1 Machine Language . 3
1.10 High-Level Languages . 4
1.11 Integrated Development Environments (IDEs) 4
1.12 What is a Program Made of? . 4

1.12.1 C++ Key Words . 4
1.12.2 Syntax . 4
1.12.3 Variables . 5

1.13 Input, Processing, and Output . 5
1.14 The Programming Process . 5

1.14.1 Design . 5
1.15 Procedural and Object-Oriented Programming 6

1.15.1 Procedural Programming . 6
1.15.2 Object-Oriented Programming . 6

2 Introduction to C++ . 7
2.1 The Parts of a C++ Program . 7
2.2 Functions . 7

2.2.1 Special Characters . 8
2.3 The cout Object . 8

Contents VII

2.3.1 Multiple Insertions . 8
2.3.2 The endl Stream Manipulator . 9
2.3.3 The Newline Escape Sequence \n . 9

2.4 The #include Directive . 9
2.5 Variables, Literals, and Assignment Statements 9

2.5.1 Variables . 9
2.5.2 Variables and Literals . 10
2.5.3 Literals . 10

3 Expressions and Interactivity . 11
3.1 The cin Object . 11

3.1.1 Using cin for Input . 11
3.1.2 How cin Works . 11
3.1.3 Potential Buffer Issues . 12
3.1.4 Defensive Programming with cin . 12

3.2 Mathematical Expressions . 12
3.2.1 Order of Operations . 12
3.2.2 Operator Precedence and Associativity 13
3.2.3 Grouping with Parentheses . 13
3.2.4 No Exponentiation Operator in C++ 13

3.3 Overflow and Underflow . 13
3.4 Type Conversion . 13

3.4.1 Hierarchy of Data Types . 14
3.4.2 Type Casting . 14

3.5 Combined Assignment Operators . 14
3.6 Formatting Output . 14

3.6.1 setprecision . 14
3.6.2 fixed and showpoint . 14
3.6.3 setw, left, and right . 15

3.7 Working with Characters and string Objects 15
3.7.1 Reading Strings with Spaces . 15
3.7.2 Reading Characters . 15
3.7.3 Using cin.ignore . 15

3.8 Mathematical Library Functions . 15
3.8.1 Random Numbers . 15

3.9 Hand Tracing a Program . 16

4 Number Systems . 17
4.1 Number Systems . 17
4.2 Decimal Numbers . 17
4.3 Binary Numbers . 17

4.3.1 Conversion from Binary to Decimal 18
4.3.2 Powers of 2 . 18
4.3.3 Conversion from Decimal to Binary 18

4.4 Hexadecimal Numbers . 19

VIII Contents

4.4.1 Conversion from Binary to Hexadecimal 19

1

Introduction to Computers and Programming

1.1 Why Program?

• A computer is a programmable electronic device that stores, retrieves, and
processes a large quantity of data both quickly and accurately.

1.2 Computer Systems: Hardware and Software

• A computer is a system of hardware and software devices/components.
• The physical components of the computer are called hardware.

1.2.1 Major Hardware Component Categories

1. Central Processing Unit (CPU)
2. Main memory
3. Secondary storage devices
4. Input devices
5. Output devices

1.3 Central Processing Unit (CPU)

• The central processing unit, or CPU, is the part of the computer that runs
programs.

• The CPU is comprised of two components: the control unit and the arith-
metic and logic unit (ALU).

2 1 Introduction to Computers and Programming

Fig. 1.1. Organization of the CPU

1.4 Main Memory

• Main Memory is rapid-access, relatively low-capacity storage for the in-
structions and data of executing/running programs.

• Main Memory is volatile. Data and instructions stored here are erased
when the program terminates or the computer is turned off.

• Also called Random Access Memory (RAM).
• Memory is divided into locations called bytes.

– One byte is enough memory to store a letter of the alphabet or a small
number.

• Addresses – Each byte in memory is identified by a unique number known
as an address.

1.5 Secondary Storage

• Secondary storage is long-term, high-capacity storage for programs and
data not currently in use.

• Secondary storage is persistent (non-volatile); data is retained when the
program stops running or the computer is turned off.

1.6 Input & Output Devices

• Input is data the computer accepts from outside for processing.
• Output is data the computer sends to the outside.

1.7 Software – Programs that Run on a Computer

Categories of software:

• System software: programs that manage the computer hardware and
the programs that run on them. Examples: operating systems, utility pro-
grams, and software development tools.

1.9 Algorithms and Machine Language 3

• Application software: programs that provide services to the user. Ex-
amples: word processors, spreadsheets, image editing software, games, and
other programs to solve specific problems.

1.8 Programs and Programming Languages

• A program is a set of instructions that the computer follows to perform
a task.

1.8.1 Example Programming Problem

Write a program that calculates and displays an hourly worker’s gross pay
given the hours worked and pay rate entered by the user, when the program
runs.

Here is a list of things the program should do:

1. Display a message on the screen asking “How many hours did you work?”
2. Wait for the user to enter the number of hours worked. Once the user

enters a number, store it in memory.
3. Display a message on the screen asking, “How much do you get paid per

hour?”
4. Wait for the user to enter an hourly pay rate. Once the user enters a

number, store it in memory.
5. Multiply the number of hours by the hourly pay rate and store the result

in memory.
6. Display a message on the screen that tells the amount of money earned.

The message must include the result of the calculation performed in Step
5.

1.9 Algorithms and Machine Language

• The list of steps forms an algorithm. An algorithm is a set of well-defined,
ordered steps for performing a task or solving a problem.

• Although we can easily understand this algorithm, it is not understandable
by a computer.

• Computers only understand algorithms expressed in machine language.

1.9.1 Machine Language

• Computers execute programs composed of numeric instructions. Machine
language is the numeric language understood by a computer processor.

• A machine language instruction is a binary pattern (containing only 1’s
and 0’s).

4 1 Introduction to Computers and Programming

• It takes multiple instructions to perform a simple mathematical calcula-
tion.

Example of machine language instructions:

0001 0011 1001 0100

0011 0001 0010 0000

0011 0010 0011 0000

0110 0001 0001 0010

1001 0011 0001 0000

1.10 High-Level Languages

• Programs today are typically written in programming languages that use
words and symbols instead of binary patterns.

• Special software is used to convert programs from these languages to the
machine language understood by a particular computer processor.

• In C++, the program that does the conversion is called a compiler.

1.11 Integrated Development Environments (IDEs)

• An Integrated Development Environment (IDE) combines the tools
needed to write, compile, and debug a program into a single software
application.

1.12 What is a Program Made of?

Common elements in high-level programming languages:

• Key Words
• Programmer-Defined Identifiers
• Operators
• Punctuation
• Syntax

1.12.1 C++ Key Words

1.12.2 Syntax

• The rules of grammar that must be followed when writing a program.
• Controls the use of key words, operators, programmer-defined symbols,

and punctuation.

1.14 The Programming Process 5

1.12.3 Variables

• A variable is a named storage location in the computer’s memory for
holding a piece of data.

• A variable can hold one data item at a time, but the data held can be
changed while the program is running.

• A variable holds a specific type of data.

1.13 Input, Processing, and Output

Three steps that programs typically perform:

1. Gather input data:
• From keyboard
• From files on disk drives
• From other hardware devices

2. Process the input data.
3. Display the results as output:

• Send it to the screen
• Write it to a file
• Send it to another hardware device

1.14 The Programming Process

• The programming process includes:
– Analysis
– Design
– Coding
– Testing
– Debugging

1.14.1 Design

• Pseudocode is a cross between human language and a programming lan-
guage that is often used by programmers to create an algorithm.

• An algorithm is an ordered sequence of well-defined steps for solving a
problem or accomplishing a task.

Sample pseudocode:

Get the number of hours worked

Get the hourly pay rate

Multiply the hours by the pay rate

and store the calculated pay

Display the pay

6 1 Introduction to Computers and Programming

1.15 Procedural and Object-Oriented Programming

• Two popular methodologies for developing computer programs are pro-
cedural programming and object-oriented programming.

• C++ can be used to write programs using either of these methodologies.
• In this course, our programs will be procedural in nature.

1.15.1 Procedural Programming

• Focus is on the tasks to be performed.
• Procedures/functions are written to perform the various tasks.
• Procedures contain their own variables and commonly share variables with

other procedures.

1.15.2 Object-Oriented Programming

• Focus is on data, designing entities (objects/classes) which contain the
data and the means to manipulate the data (methods).

• Objects encapsulate their data and methods.
• Objects do not know how other objects are implemented and cannot di-

rectly access another object’s data.

2

Introduction to C++

2.1 The Parts of a C++ Program

Let’s examine a simple C++ program from Pr2-1.cpp:

// A s imple C++ program that
// d i s p l a y s a message on the s c r e en
#inc lude <iostream>
us ing namespace std ;
i n t main ()
{

cout << ”Programming i s fun ” ;
re turn 0 ;

}

Each part of the program serves a specific purpose:

• // A simple C++ program that displays a message on the screen—
This is a comment.

• #include <iostream> — This is a preprocessor directive.
• using namespace std; — Specifies which namespace to use.
• int main() — Marks the beginning of the function named main.
• { and } — The beginning and end of the block for main.
• cout << "Programming is fun"; — An output statement.
• return 0; — Sends a value of 0 to the operating system.

2.2 Functions

• A function is a named subroutine, a collection of programming statements
for performing a specific task that can be executed by name.

• Every C++ program must have a function called main. The function main

is the starting point for the execution of a C++ program.

8 2 Introduction to C++

• Every function has a header that provides important information about
the function:
– Name
– Return type
– Parameters

• Every function has a body; which is the group of statements that perform
the task of the function.

• The body of every function begins with a left (opening) brace, {, and ends
with a right (closing) brace, }.

2.2.1 Special Characters

Char Name Description
// Double slash Marks the beginning of a comment
Pound sign Marks the beginning of a preprocessor directive
< > Angle brackets Encloses a filename in a #include directive
() Parentheses Used when naming a function
{ } Braces Encloses a group of statements
" " Quotation marks Encloses a string of characters
; Semicolon Marks the end of a complete programming statement

Table 2.1. Special Characters in C++

2.3 The cout Object

• The cout object is the standard output object.
• It displays output on the computer screen.
• To use cout, you must include the iostream header file.
• cout is classified as a stream object, which means it works with streams

of data.
• The stream insertion operator, <<, is used to send data items to cout.

Example:

cout << ”Programming i s fun ! ” ;

2.3.1 Multiple Insertions

• It is possible to send more than one data item to cout.

Example:

cout << ”He l lo ” << ” the re ! ” ;

2.5 Variables, Literals, and Assignment Statements 9

2.3.2 The endl Stream Manipulator

• If the endl manipulator is inserted into a stream, it will start a new line
of output.

Example:

cout << ”He l lo ” << endl << ” c l a s s ! ” ;

This produces the following output:

Hello

class!

2.3.3 The Newline Escape Sequence \n

• You can also use the newline escape sequence \n to start a new line of
output.

Example:

cout << ”Programming i s \nfun ! ” ;

This produces:

Programming is

fun!

2.4 The #include Directive

• Instructs the preprocessor to insert the contents of another file into the
program.

• Example: #include <iostream>

• These are not part of the “core” of the C++ language. They are part of
the input-output stream library.

• Do not place a semicolon at the end of a preprocessor directive.

2.5 Variables, Literals, and Assignment Statements

2.5.1 Variables

• A variable is a named location in the computer’s memory that can store
a value that may be changed during the execution of the program.

• In C++, variables must be defined before they are used.
• A variable definition consists of the data type followed by the name of the

variable.

Example:

i n t number ;

10 2 Introduction to C++

2.5.2 Variables and Literals

• After defining the variable, you can assign a value to it.

Example:

number = 5 ;
cout << ”The value in number i s ” << number << endl ;

2.5.3 Literals

• A literal is a piece of data that is written directly into the source code of
a program.

• Examples:
– "hello, there" (string literal)
– 12 (integer literal)
– 12.5 (floating point literal)

3

Expressions and Interactivity

3.1 The cin Object

• The cin object is the standard input object.
• It is used for reading input from the console (or keyboard).
• You must #include <iostream> to use the cin object.
• Data is read from cin using the stream extraction operator, >>.
• The data read is stored in variable(s).

3.1.1 Using cin for Input

• Gathering console input is normally a two-step process:
1. Use the cout object to display a prompt on the computer screen.
2. Use the cin object to read a data item from the keyboard.

• A prompt is a message that instructs the user to enter data.

Example:

i n t month ;
cout << ”Enter the whole number cor re spond ing to the month : ” ;
c in >> month ;

3.1.2 How cin Works

• The cin object causes a program to wait until data is typed at the key-
board and the [Enter] key is pressed.

• The keystrokes typed by the user are echoed on the standard output device
so the user can see what they typed.

• Pressing the [Enter] key results in a newline being printed on the screen.
• The stream extraction operator, >>, automatically converts the data read

to the data type of the variable that is its right operand.

12 3 Expressions and Interactivity

• It is possible to cascade a sequence of stream extraction operators in a cin
statement to read multiple data items.

Example:

i n t age ;
double weight ;
c in >> age >> weight ;

3.1.3 Potential Buffer Issues

• When mixing inputs of different types or when the user input does not
match the expected format, data can remain in the input buffer, leading
to unexpected behavior.

• For example, if the user types 10.7 when an integer is expected, only 10

will be read into the integer variable, and the .7 will remain in the buffer.

3.1.4 Defensive Programming with cin

• Write clear prompts to guide the user.
• Avoid reading multiple inputs in a single cin statement unless they are

components of one entity.
• Prompt for and read each data item separately to reduce the chance of

input errors.

3.2 Mathematical Expressions

• In C++, an expression is an arrangement of literals, identifiers, and oper-
ators that evaluates to a single value.

• Mathematical expressions can be built with several operators.
• Operators are applied according to the rules of operator precedence and

associativity.

3.2.1 Order of Operations

1. Unary minus has higher precedence than multiplication, division, and
modulus operators.

2. Multiplication, division, and modulus operators have higher precedence
than addition and subtraction.

3. Operators of the same precedence are evaluated from left to right.

3.4 Type Conversion 13

Operators Description Associativity

() Parentheses
- (unary) Unary minus Right to left
*, /, % Multiplication, Division, Modulus Left to right
+, - Addition, Subtraction Left to right

Table 3.1. Operator Precedence and Associativity

3.2.2 Operator Precedence and Associativity

3.2.3 Grouping with Parentheses

• Parentheses may be used to force the evaluation of subexpressions.
• Example:

slope =
y2 − y1
x2 − x1

;

• In code:

s l ope = (y2 − y1) / (x2 − x1) ;

3.2.4 No Exponentiation Operator in C++

• There is no exponentiation operator in C++.
• To raise a number to a power, use the pow function from the cmath library.
• Example:

#inc lude <cmath>
area = pow(s ide , 2) ;

3.3 Overflow and Underflow

• Overflow occurs when a variable is assigned a value that is too large for
its data type.

• Underflow occurs when a variable is assigned a value that is too small
for its data type.

• For integer overflow, values may wrap around.
• For floating-point types, the behavior may vary by system.

3.4 Type Conversion

• When an operator’s operands are of different data types, C++ automati-
cally converts the operands to the same data type.

• This automatic type conversion is known as coercion.

14 3 Expressions and Interactivity

3.4.1 Hierarchy of Data Types

• Data types are ranked by their size and precision.
• When performing operations, operands are converted to the higher-ranking

type.

3.4.2 Type Casting

• A type cast expression is used to manually convert a value to a different
data type.

• Syntax:

s t a t i c c a s t <data−type>(exp r e s s i on)

• Example:

i n t x = 13 ;
double r e s u l t ;
r e s u l t = s t a t i c c a s t <double>(x) / y ;

3.5 Combined Assignment Operators

• C++ provides shorthand operators for common arithmetic operations that
modify a variable.

• Examples:
– balance += deposit; is equivalent to balance = balance + deposit;

– count -= 1; is equivalent to count = count - 1;

3.6 Formatting Output

• The cout object provides ways to format data as it is being displayed.
• Stream manipulators are used for formatting.
• To use certain manipulators, you must #include <iomanip>.

3.6.1 setprecision

• Controls the number of significant digits displayed.
• Example:

cout << s e t p r e c i s i o n (4) << number ;

3.6.2 fixed and showpoint

• The fixed manipulator displays floating-point numbers in fixed-point no-
tation.

• The showpoint manipulator forces the display of trailing zeros.

3.8 Mathematical Library Functions 15

3.6.3 setw, left, and right

• The setw manipulator sets the minimum field width for the next output.
• The left and right manipulators control justification.

3.7 Working with Characters and string Objects

3.7.1 Reading Strings with Spaces

• The getline function reads an entire line, including spaces, into a string

object.
• Syntax:

g e t l i n e (cin , name) ;

3.7.2 Reading Characters

• To read a single character, including whitespace, use cin.get().
• Example:

char ch ;
ch = c in . get () ;

3.7.3 Using cin.ignore

• The cin.ignore function skips characters in the input buffer.
• Useful when switching from cin >> to getline or cin.get().

3.8 Mathematical Library Functions

• The cmath library provides various mathematical functions.
• Common functions include pow, sqrt, sin, cos, tan, log, exp.

3.8.1 Random Numbers

• The rand function generates pseudo-random numbers.
• To seed the random number generator, use srand with a seed value.
• Example:

#inc lude <c s t d l i b>
#inc lude <ctime>
srand (time (0)) ;
i n t randomNumber = rand () ;

16 3 Expressions and Interactivity

3.9 Hand Tracing a Program

• Hand tracing involves simulating the execution of a program by tracking
the values of variables.

• Useful for debugging and understanding program flow.

4

Number Systems

4.1 Number Systems

• Binary is a positional numbering system (as is decimal) meaning that
the position of the digits with respect to a radix point implies the value
associated with the sequence of digits.

• Decimal
– Base 10
– Ten distinct digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
– A decimal number represents a power series of 10

• Binary
– Base 2
– Two distinct digits (0, 1)
– A binary number represents a power series of 2

4.2 Decimal Numbers

Given the decimal integer: 1368

1368 = (1× 103) + (3× 102) + (6× 101) + (8× 100)

4.3 Binary Numbers

Given the unsigned binary integer: 0101

01012 = (0× 23) + (1× 22) + (0× 21) + (1× 20) = 510

18 4 Number Systems

4.3.1 Conversion from Binary to Decimal

1. Form the power series represented by the number.
2. Evaluate the series using decimal arithmetic.

Example:
What is the decimal equivalent of the unsigned binary value 1101011?

11010112 = (1× 26) + (1× 25) + (0× 24) + (1× 23) + (0× 22) + (1× 21) + (1× 20)

= 64 + 32 + 0 + 8 + 0 + 2 + 1

= 10710

4.3.2 Powers of 2

• 20 = 1
• 21 = 2
• 22 = 4
• 23 = 8
• 24 = 16
• 25 = 32
• 26 = 64
• 27 = 128
• 28 = 256

4.3.3 Conversion from Decimal to Binary

1. Repeatedly subtract the largest power of 2 that produces a nonnegative
result.

2. Construct the binary number by placing ones in the positions correspond-
ing to the powers of two subtracted in step 1 and zeros in all the other
positions.

Example:
Convert the decimal value 50 to binary.

50− 25(32) = 18

18− 24(16) = 2

2− 21(2) = 0

So, 5010 = 1100102.

4.4 Hexadecimal Numbers 19

4.4 Hexadecimal Numbers

• Hexadecimal is another positional numbering system that is frequently
used as a shorthand for binary.

• Hexadecimal
– Base 16
– Sixteen distinct digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
– A hexadecimal number represents a power series of 16

4.4.1 Conversion from Binary to Hexadecimal

1. Moving from the radix point, group the binary digits into groups of four.
(Insert leading zeros as needed at the left of the binary value).

2. Replace each group of four digits with the equivalent hexadecimal digit.

Example:
What is the hexadecimal equivalent of the binary value 100011111001?

1000 1111 1001 = 8 F 9

= (8F9)16

